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Abstract. General asymptotic formulae are derived by means of the WKB approximation for the
continuous and discreteRyi entropies of position of one-dimensional quantum systems in energy
eigenstates, in terms of the corresponding entropies for a microcanonical ensemble of analogous
classical systems. These results are checked in the simplest particular case of the infinite potential
well, where the asymptotic formula for continuous entropies holds as an exact identity. For the
discrete entropies, analytical expressions are obtained from which the asymptotic formulae given
for the limiting cases of large and small measurement resolution can both be verified.

1. Introduction

For a continuous probability distribution with density functiBix), the Boltzmann—Shannon
information entropy is defined as

S= —/ P(x)InP(x)dx = (—In P(x)). 1)

When P (x) is the quantum probability density of position of a system described by the
wavefunctiony (x), Po(x) = |¥(x)|?, the Boltzmann-Shannon entropy measures the
uncertainty in the localization of the particle in position space. The quantum entropy
So = (—In Po(x)) and its counterpart in momentum space have been used in recent years
to discuss a wide range of quantum mechanical problems, such as, e.g., the mathematical
formulation of the position—momentum uncertainty principle [1]. Accordingly, there has been
a growing interest in the calculation 8§ for physically interesting quantum states. However,
the exact calculation iy, is a very difficult mathematical problem, even for simple systems as
the harmonic oscillator and hydrogen atom [2], which has attracted interest to its approximate
calculation, specially for very excited or Rydberg stationary states [3, 4].

In a recent paper [5], the following asymptotic formula was obtained:

SQ~SC—1+In2 (2)

whereSg is the quantum entropy of position in thtéh energy eigenstate of a one-dimensional
system with an infinite discrete spectrdiiy, }, andSc is the entropy of the probability density
Pc(x) corresponding to a microcanonical ensemble of analogous classical systems with energy
E = E,. This equation, which provides a useful approximatiors¢ofor largen without
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requiring previous knowledge of the quantum eigenfunctions, holds for any Hamiltonian of

the form
p2
H= -tV 3)
where, at least for large, there are two classical turning points fBr= E,. That is, the
motion of a classical particle with (constant) enefgyis periodic between the turning points
x_ andx: (x_ < x+), where the speed = p/m of the particle reduces to zero,

V(x_) =V(x:) = E,

and there exists a hon-vanishing fore&”’(x) that causes the particle to move towards the
right atx = x_, and towards the left at = x.,

Vi(x_) <0 V'(xs+) > 0.

Equation (2) follows from the semiclassical (WKB) approximation to quantum mechanics [6],
and has an appealing physical interpretation as a manifestation of the so-called configuration
form of Bohr's correspondence principle [7], which states that for largee expected value

of any observable”(x) in the nth eigenstate approaches the corresponding average for the
analogous classical system having the same energy:

(F(x))q ~ (F(x))c (4)
with the correction term-1 +In 2 arising due to the explicit dependence&ak) = —In P(x)
on the probability density (x) [5]. The validity of equation (2) has been checked by numerical
and analytical calculations of the involved entropies for several simple systems, namely the
particle in a box (infinite potential well), where the asymptotic formula holds as an exact
identity, the linear potential and the harmonic oscillator [5].

The differential entropys defined by (1) is a measure of the uncertainty associated with
the continuous random variable whose probability density functidh(ig. However, actual
physical measurements of any continuous observable such as position are always performed
by means of measuring devices that have finite resolution. This means that the continuous
spectrum of the position observable is partitioned into a countable set of intervals (or ‘bins’, in
the terminology of [8]) of lengtlhx > O (for the sake of simplicity, we assume the resolution
of the measuring device to be uniform). The probabi}P;&X) of finding the outcome of the
position measurement to have a value initieinterval,(Ax)y, is the integral of? (x) dx over
this interval,

P9 — / P(x)dx (5)
(Ax)k

and the entropy®* corresponding to the discrete probability distributigt{**'} is [8, 9]
g _ Z Pk(Ax) In Pk(Ax). (6)
k

Unlike the continuous or differential entroy the discrete entropy®* is always a non-
negative quantitys* > 0, and also satisfies the inequality [9]

SAY > § —In(Ax)
which becomes an equality in the limitx — 0,

SAY +n(Ax) — S Ax — 0. )
The latter equation can be proved by noting that, in the lmit— 0,

1
Pk(Ax) = P(x)Ax xXx € (AX)y Z P(xp) = ~ (8)
%
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so that
$AY = =3[P () Ax]IN[ P (x) Ax]
k

= Z P(x) I[P (x)]Ax — In(Ax)
k
while, on the other hand, assuming ti®tr) In P (x) is Riemann integrable,
S=— Z/ P(x)InP(x)dr = — Y P(x) In[P(xp)] Ax.
k (Ax)k k

Itfollows from (7) thatin the limitAx — O the difference between the discrete entropies of any
two probability densities coincides with the difference between the corresponding differential

entropies, i.e.55™" — §{* = §, — §;. In particular, the asymptotic formula (2) is also valid
for the discrete entropies4,
So ~ S& —1+1In2 Ax — 0. (9)

More precisely, it can be shown [5] that:

S(QAx) ~ SéAx) _1+In2 Ax & X+ — X

(10)

n
while in the opposite case the asymptotic behaviour of the discrete quantum entropy is given
by (4),

X+ — X
S(QAx) ~ SéAx) Ax > +

11)

In the framework of Shannon’s information theory [10], the entropy defined by equations
(1) and (6) is proved to be the only rigorous mathematical measure of the lack of knowledge
or uncertainty associated to a continuous or discrete random variable, respectively. However,
if one somewhat relaxes the requirements that are axiomatically imposed on the uncertainty
measure, a number of other similar quantities can be defined. The most important of these
generalized entropies is the ordgRéenyi entropy [11, 12], which for a continuous probability
density P (x) is defined as

1
5@ = I [P dr = T nPa)* Y g=0 ()
1-¢ 1-¢
while for the discrete probability distributioP**'} the corresponding expression is
1 N
S (q) = Ny (P g >0 (13)
1-9 =

It can be shown [11] that, for a fixed probability distribution, thenii entropy is a continuous,
non-increasing and convex function of the paramegtefAnother important generalization of
Shannon’s entropy is the orderTsallis entropyS(¢) [12, 13], which is related to the@yi
entropy of the same order by

S(@) = 7= {expll - 9)S@] - 1

—4 14)
C(Ax) 1 (Ax) (
§@) = 7= ;P — S - 1)
in the continuous and discrete cases, respectively. €hgiRnd Tsallis families of generalized
entropies both include Shannon’s entropy as the particulagcasg, as may be seen by taking

the limitg — 1 in the above definitions.
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In recent years, the&hyi and Tsallis entropies corresponding to the quantum probability
densities of position and momentum have also been applied to the mathematical formulation
of the uncertainty principle [14], and their approximate calculation for Rydberg states of
physically interesting systems has been the subject of active research [4]. The aims of this
paper are (i) to find the generalization of equations (2), (10) and (11) to the whole g&tyif R
entropies, and (ii) to check these generalized asymptotic formulae in the simplest particular
case of the infinite potential well, where, as we shall see, this can be done in a fully analytical
way. The derivation of the asymptotic formulae relating quantum and classogl Bntropies
of position, both continuous and discrete, is carried out in section 2. In section 3, the discrete
Rényi entropies are calculated for the eigenstates of the infinite well; although the general
expression of the quantum entropies turns out to be rather cumbersome, it is shown to reduce
to a simple form in two important particular cases. Using these results, in section 4 we are able
to verify analytically the validity of equations (10) and (11), as well as their generalizations
to Rényi entropies. Finally, in section 5, some concluding remarks are given and several open
problems are pointed out.

2. Generalization of the asymptotic formulae to Renyi entropies

To obtain the generalization of equation (2) tériyi entropies, we begin by recalling that,
under the assumptions of section 1, a classical particle with Hamiltonian (3) and (constant)
energyE = E, undergoes periodic motion between the turning paintsand x., so that

Pc(x) = 0 outside the intervald_, x,]. The probability Pc(x) dx of finding the particle in

the region betweer andx + dx is proportional to the amount of timet,dhe particle spends

in that region during one traversal of the potential well (from, sayto x.), which in turn is
inversely proportional to the speed= dx/dr at the pointr (or, equivalently, to the momentum

p = mv) [6,7,15,16]. Using equation (3), it can be shown [16] that the normalized classical
probability density for the position of the particle is given by

b L[ om
™= E—vm

within the classically allowed region. < x < x4, whereT is the period of the motion.

On the other hand, in the limit of large quantum numbers the quantum probability density
Po(x) also vanishes outside the classically allowed region, while inside this region the WKB
approximation [6] yields [5]

Po(x) ~ 2Pc(x) o€ ¢ (x) b(x) = (n + %) u(x) — % (15)

whereu(x) is a monotonically increasing function withx_) = 0 andu(x+) = m. This
relation leads to the asymptotic formula

/OO[PQ(x)]‘f dx ~ 29 /h[Pc(x)]’f cos? ¢ (x) dx
2T@+3) [~

Jal(g+1) Ji

where in the last step we have taken into account that, for larges? ¢ (x) is a very rapidly
oscillating function and can be replaced in the integral by its average value over a period,

1" _ T+yp
;A COSqudx—m.

[Pc(x)]? dx (16)
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A rigorous proof of this statement can be achieved by making the change of variabte 6
and applying, withg (9) = cos“ 6, the following theorem (lemma 2.1 in [4]),

s 1 T T
/ gmo +y(0)) f(0)do ~ —/ 8(9) dG/ f(0)do
0 T Jo 0

whereg is a continuous function such thatd + =) = g(9), f € L*([0,r]), andy is a
measurable and almost everywhere finite am{Pfunction.

Combining equations (12) and (16), we obtain the asymptotic formula relating quantum
and classical Bnyi entropies,

Y e+ —m 2Tt _ o oo, 17
Q(q) ~ Sc(q) 1-g " AT D = cl@) + f(q) 17)

which holds for every positive value gf such that the integrals in both sides do exist. The
asymptotic difference (¢) between quantum and classic@rii entropies is a monotonically
decreasing function af for ¢ > 0 (see figure 1), withf (0) = 0 andf(¢) — —In2in the
limit ¢ — oo, as may be readily shown by applying the Stirling approximation [17],

L'(z) ~ /anzfl/Zefz

to the gamma functions in (17). In the limjt — 1, using L'Hopital’s rule and taking into
account that, if2 is a non-negative integer,

1 1 1
+tD)=—y+) — +-)=—-y—-2In2+ 18
Y(n+1) y;k ¢<n2) y nk;k_% (18)
wherey (z) = I''(z)/ T'(z) is the logarithmic derivative of the gamma function anid Euler's
constant[17,18], we readily find th@{1) = —1+In 2, thus recovering the asymptotic formula
for the quantum Shannon entropy (2).

For the discrete probability distributio{rP,fo)}, the g-order Renyi entropy is given by
(13). Equation (7) remains valid foréRyi entropies of arbitrary order, since in the limit

Ax — 0 (8) yields
1
q
= In { Zk:[P(xk)Ax] }

_ 1 In{(Ax)qlz[P(xk)]qAx}
1—¢ T

S (q) =

1

= —In(Ax) + In { Z[P(xk)]qAx}
l1—g T

while we also have

1 1
S(q) = In { / [P(x)]? dx} = In { [P(x )]qAx}.
1-¢q zk: (A 1-g¢ Xk: ‘
Therefore, recalling equation (17), we find that
1, 2Te+ )
—q Jwl@+D
which is the generalization of (9) todRyi entropies.
The previous statement can be made more precise as in the Shannon entropy case [5]

by noting that the function cé% (x) in (15) hasn zeros, which are located at the poinjs
satisfying the condition

k+3
u(xy) = p T k=0,1,...,n— 1.

i
2

S0 @) ~ S @) + 5 =5+ fl@)  Ax—0 (19)
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0.0 T

1(q)

Figure 1. Asymptotic value of the difference between quantum and classieayirentropies of
position,Sq(q) — Sc(q) = f(g)-

Therefore, the average distance between two consecutive zerog ¢f(epss approximately
equal to(x, — x_)/n for largen. If this distance is much less thax, the function co$¢ (x)
oscillates very rapidly over each inter@ x),, so that it can be replaced by the average value
1 in the calculation of?{** using equation (5) together with the WKB quantum probability
density (15). We thus find that

X+ — X
S ~ SEVg)  Ax>

(20)

while in the opposite case we can make use of (19), which may be written more precisely as

1 2"1"(q+%) Xy — X_
In x L .

—q JaT@+D

These two equations are the generalizationsényRentropies of (11) and (10), respectively.

For thenth stationary state of the quantum particle in a box (infinite potential well) of
length L, the classical and quantum probability densities are given by [6]

S0 @)~ 8E (@) + £ (21)

1 2 .,/ nmx
— — iakad <x<
Pe(@) = 7 Po(x) = = sin ( . ) 0<x<L. (22)
Using (12), the correspondinggRyi entropies are found to be

Sc(g) =InL So(g) =InL + 1 In 24F(q+%) InL+ f(q)
T ST g T AT T !
so that in this case the asymptotic formula (17) holds as an exact equality, in the same way
as (2). Next, we shall address the more difficult problem of verifying in the same system the
validity of the asymptotic formulae for discrete entropies.
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3. Calculation of the discrete entropies for the infinite well eigenstates

Let us assume that the interval, [0] is divided into N bins of lengthAx = L/N, and
let Pk(Ax) denote the probability of obtaining a valwesuch that(k — 1)Ax < x < kAx
(k=1,2,..., N)forthe position of the particle when it is measured with a device of resolution
Ax. The probabilitiesP,fo) and the correspondingéRyi entropies for the classical density
Pc(x) are easily computed from the first equation in (22) using (5) and (6),
! 1

pAY = 5 S&9@) =InN. (23)
On the other hand, for the quantum deng®y(x) given by the second equation in (22), the
discrete probabilities are

wan 1 1 |: , <2nnk> . <2n71(k—l)>:|
P == -~ |sin —sin| ——=
N 2nm N N

1 2k —1
= —|1—vcos M (24)
N N
where in the second expression we have introduced the convenient notation
N nmw
= —sin(—). 25
Y nm ( N ) (25)

The calculation of the quantum discrete entropies thus reduces to that of the sums
N
oq) =Y (P (26)
k=1

whereP*" is given by (24). At first sight, there is only one case for which the expression of
o(q), and hence that (ﬂ((f)‘)(q) = (1-¢)tIno(g), has a simple form:

Case 1.If 2n is a multiple of N, which we denote as2= N, then
o(q) = N1 56 (@) =InN. (27)

This result follows immediately from the fact thB,{AX) = 1/N for 2n = N, as can be easily
shown from the first line of (24). Thus we see that in this case the asymptotic formula (20)
holds as an exact identity.

Using the binomial expansion

(1+2)? =Z<‘f)z’ zl <1

=0
where for arbitrary (i.e. not necessarily integer) valueg tife binomial coefficient is defined

as
g\ TI'l+qg)

(1) T TA+q - DI (28)
the second expression f@1 " in (24) leads to

(o]

1 a\, e nm(2k — 1)
o(q)—NqZ(l>( V) ;coé (—N ) (29)

=0
Taking into account the result

N _ __1\M/N ; A
ZCOS(Mn(Zk 1))2{( HM/N N if M=N

N 0 if M#N (30)

k=1
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the second part of which follows from the summation formula [18]

sin 2N x
2 sinx

N
Z cog2k — 1)x =

k=1
we see that thé = 1 term in equation (29) is identically zero, since= 0 if » = N and
otherwise the summation overequals zero. Therefore, (29) can be written as

1T (¢ N (nm(2k—1)
o(q) = Nq[2<2m>v2’"2co§ (T)

m=0 k=1

00 N
_ Z (szI_ 1) 21 Z co"1 (”77(21/:]— 1 >:| (31)
m=2 k=1

Using the trigonometric identities [18]

1
cog" 1A= =D <2m a 1) cosf2m — 2j — 1)A]

m—1
cog" A = Zim <2m> 2’: T ( )COS[(Zm 2j)A]

]*0
.]

with A = n(2k — 1)/N, (31) reads

i S E)EG) FEEE) L

N .
8 ZCOS( 2m — 2j)nmw (2k — 1))

§

=+

o(q) =

I
o

J

k=1 N
2 X 2m—1m—2 2m—1
)G 5
= j=
N
XZCOS((zm 2j —]\]})nn(Zk 1))] 32)
k=1

where: (i) in the second term the lower bound zero in the summatiomohies been replaced

by one since the summation ovgris empty form = 0, and (ii) in the last term the upper
boundmn — 1 in the summation over has been replaced loy— 2 by noting thatthg = m — 1

term vanishes because of equation (30). It is worth noting that, recalling the definition of the
Pochhammer symbat);,

C(z+k) (D -z

- Y _ = ¥ 33
@="T5 Trd—z—k) 33)
and taking advantage of the duplication formula for the gamma function [17, 18],
221—1 1
2z = ) {z+= 34
(22) NG (2) (z 2> (34)

the first term in the right-hand side of (32) can be written as a Gauss hypergeometric function
F(a,b;c; z) = 2F1(a, b; ¢; 2),

> q 2m v\Zn _ > (_Q/Z)m((l_q)/z)m v2m
2 (2111) ( m ) (E) =2 Dm m!

m=0 m

FE ‘—é,; vz). (35)
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In general, the alternative expressionddy ) that we have just obtained is rather cumbersome,
and hence less useful than the original one for practical calculations. However, from it we
can single out a second particular case where the expressieng pand S(A)‘)(q) have a
remarkably simple form:

Case 2.If ¢ > 2 is an integer, and, either= N, orkn # N for any integerk such that
2< k <gq,then

1-
o(g) = N~ qF( Z 5 ,1;v2>

! InF (_Z 1—q Lv )
—q 2" 2

In the case when = N, this result is simply a particular instance of case 1, since then
v = 0 and the value of the hypergeometric function in (36) is unity. On the other hand, under
the second condition, equation (30) implies that every summationjovef32) equals zero.
Therefore, the only non-vanishing term in the right-hand side of this equation is the first one,

and (35) then leads to the result stated above. It is interesting to note that, for integer values
of ¢, equation (36) holds whenevar > gn.

(36)

S5 (q) =InN +
Q (@) 1

As an immediate application of the theorems constituting cases 1 and 2, we can write
down the complete analytical expressiorogR),

=N if 2n=N
TANTFL -4 50 = N+ 1P if 2n#£N -

The values of the difference between the quantuemyR entropy of order 254" (2) =

—Ino(2), and its classical counterpas; ™’ (2) = In N, are displayed in figure 2 for = 10,
1 < N < 50. Expressions of the same kind can be written for any integer valpeatthough
they become increasingly cumbersome &screases because of the large number of particular
cases that need to be considered. On the other hapds ifiot an integer, then the expansion
of o (¢g) in (32) is actually an infinite series, and (leaving aside the gaseV) equation (36)
only would hold provided thakn # N for every integek > 2; however, this assumption
cannot be fulfilled, sincén = N, at least, whenevér= N.

Differentiating equation (28) with respect4owe obtain

B (q\| _v@-y@-D
dg \1/)|,-,  T@-ni'

If p is a non-negative integer, bolil(z) andy (z) have simple poles far = — p, with residues
(=1)?/p!and—1 respectively [17]. Therefore, fér> 2 the previous formula simplifies to

1
kS <4> _ D I>2.
og \I )|, 1—1

Using this result, the Boltzmann—Shannon entropy can be evaluated from (32) as

v __ 90(q) SN (2m —2)! vy2n

S 7 WL e D (3)
2 n ' (2m 2m — 2j)nm(2k — 1)
el (>
2 & v 2m—1M=2 2m —1
_szm 1)(2m 2)() Z( j )

m:2 j=0
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Figure 2. Differenceg(q) = SéA")(q) — 58 = SéA’”)(q) — In N between the quantum
and classical discrete entropies of position in the tenth eigenstate of the infinite potential well, for

1< N < 50.

N —2j —Dnn(2k — 1

chos(Qm J = Dnm (2 )). (37)
k=1 N

Shifting the summation index to = m — 1, and again using equations (33) and (34), we can
express the first term in the right-hand side of (37) in termsg#f,ghypergeometric function,

(2m — 2)! _ ( )p(l)p L2
mZ::l (m!)? ( ) Z [(2),]? ’
2

1
= VZ 3F> (5’ 1,1;2 2 v2> . (38)

As happens foS(“) (g) wheng is not an integer, no compact expression can be found for

S(g“) unless the condition of case 1 holds. From the numerical values displayed in figure 2 for
n =10,1< N < 50, we see that the behaviour of the discrete Shannon entropy is qualitatively
similar to that of the order-two &yi entropy, excepting the case wh€n=n, N > 2n. We

also verify the inequalitsy™ = 557 (1) > 55 (2), which illustrates the fact that for a
fixed probability d|str|but|on the é?ny| entropy |s a non-increasing function of the parameter

q [11,12].

4. Limiting cases

For the infinite well, wherex, — x_ = L, the conditionsAx > (x+ — x_)/n and
Ax < (x4 —x_)/n are equivalent t&v « n andN > n, respectively. In the following, we
shall show that, in the limits//n — 0 andN/n — oo, S5 (¢) is approximately given by
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equations (27) and (36), respectively, and, as a consequence, the asymptotic formulae (20) and
(21) are verified.

From equation (25), we readily see that tN¢rn — 0 limit corresponds to — 0.
Therefore, according to (24), in this limit the quantum vaIueD;S‘i“) tends to the classical
one, which already suffices to verify the validity of (20). More precisely, writing

N
Zcoé (W) — N cosy;

k=1
(in particular, cosg = 1), equation (31) yields
o(g) = N"1+00))]  557(g) =InN +0(? (39)

so thatsy™ (q) — InN = S8 (g) asN/n — 0.

Next we consider the limitv/n — oo. From equation (30) we see that, in the right-
hand side of (32), theith terms in the second and third summations awveto both vanish if
N > 2mn. Therefore, only the values of satisfying the inequalityx > N/(2n) can give a
non-zero contribution to these two series, whose convergence then implies that they must tend
to zero asV/n — oo. We thus conclude that in this limit the only non-vanishing term in the
right-hand side of (32) is the first one, so that, recalling equation &), andsy™ (¢) are
approximately given by (36),

1—
o(q) —> N 9F (—%, Tq; 1; vz)

1 qg 1—gq
SA0 InN + InF(-<, —%:1;12 N )
o (@) — 14 5 5 v /n — o0

Furthermore, from equation (25) we see that- 1 asN/n — oo, so that we have

(40)

1 g 1—gq
§A0 InN + nF(-<, —%:1;1 N . (41
$r@-mnetonr (<550 51) N @

Finally, taking advantage of the well known Gauss formula [17]
'c)l'(c—a—>b)

T T—al(c—b)

equation (41) simplifies to

F(a,b;c; 1)

Re(c—a—-b) >0 c#0,-1,-2,...

. (g +3)
1-q T(g/2+Dl(q/2+3)
Using (34), the right-hand side of the previous equation is readily shown to be equivalent to

that of (21).
In the casey = 1, using equations (37) and (38) a similar reasoning shows that

S5 (@) = InN + N/n — co. (42)

2 1
S§ = InN — UZ 3F> (E’ 1,1;2,2; v2> N/n — oo. (43)
From figure 2 we see that, ¥ > n andN # n, the right-hand side of (43) provides a good

approximation ta§s™" even whenV/» is not very large. Taking the limit — 1, we find

So = InN —33F(3,1,1:2,2:0) N/n — (44)
and, using the result [17]
b
3Fo(a+11L1Lb+1,2,1) = —[y(b) —¥(b—a)]
a
a#0 b#0,-1-2,... Re(b —a) >0
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together with equation (18), (44) simplifies to
S6 = InN—1+In2 N/n — oo. (45)

We thus verify the validity of the asymptotic formula (10) for the discrete Shannon entropy of
position.

5. Conclusions and open problems

To summarize, we have derived general asymptotic formulae for the continuous and discrete
Rényi entropies of position of one-dimensional quantum systems in energy eigenstates, which
are given interms of the corresponding classical entropies (i.e., the entropies computed from the
position probability distribution for a microcanonical ensemble of analogous classical systems
with the same energy), and these results have been analytically checked for the particle in a
box (infinite potential well).

The asymptotic formula (17) for the continuous entropies defined by (12) follows directly
from the semiclassical (WKB) approximation to quantum mechanics, and is valid whenever
the Hamiltonian of the system satisfies some very general conditions (see section 1). In turn,
from (17) the asymptotic formulae (20) and (21) are obtained for the discrete entropies defined
by (13) in the limiting cases when the resolution length of the position measurements is
very large or very small, respectively, in comparison with the average distance between the
zeros of the wavefunction.

Equations (17), (20) and (21) include as particular cases, respectively, the asymptotic
formulae (2), (11) and (10) for the quantum Boltzmann—-Shannon entropies of position first
derived in reference [5]. As has already been pointed out in relation to (2), the existence of a
non-zero asymptotic difference between classical and quantum entropies in equations (17) and
(21) can be interpreted in terms of the so-called configuration form of Bohr’s correspondence
principle (4), with the correction terryi(g) arising from the fact that &yi entropies can be
written as the expected value of a quantity that depends explicitly on the probability distribution
itself (see equation (12)). Itis also worth noting that all the results given in this papegfigi R
entropies may be written in terms of Tsallis entropies using (14), although then they take a
more cumbersome and hence less appealing form.

In the particular case of the infinite potential well, the asymptotic formula for continuous
entropies (17) becomes an exact identity. To check the validity of the asymptotic formulae for
discrete entropies is a more difficult problem, since the explicit expressions of these entropies
are, in general, rather cumbersome. However, we have seen that they reduce to remarkably
simple forms in two important particular cases, which enable us to verify in a purely analytic
way the validity of the limiting asymptotic relations (20) and (21). The transition between the
regions of validity of these two approximations as the resolution lengttof the position
measurements decreases is depicted graphically in figure 2.

When equation (17) is used to evaluate the quantum entsggy) for largen, it is
important to know the rate of convergence of the actual valuek) @f) to the asymptotical
value in the right-hand side. That is, to know the next term in the asymptotic expansion of
Sa(g) for n > 1, whose leading term is given by (17). Numerical and analytical studies
carried out for some particular systems [3, 5] suggest that (17) may be improved to

1 nzqr(q+%)
—q J/rl(@@+D

sothatwhen (17) is used the error in the estimation of the quantum entropies falls off according
to a power law (the functiok(g) and the constant depend on the considered system).

Sq(g) ~ Sc(q) + 1 +k(g)n~ +o(n™) €e>0
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However, to prove (or disprove) that the previous formula holds indeed in the general case
is a very difficult problem, whose solution would require the use of a higher-order WKB
approximation and a stronger version of the key theorem used in section 2 (lemma 2.1 in [4]),
and, up to now, we have not been able to obtain any result of this kind.

The generalization of the asymptotic formulae obtained in this paper i0-tienensional
case is straightforward for systems whose Hamiltonian is completely separable in Cartesian
coordinates [5],

H =) Hx, pi).

D
i=1

Both the quantum and classical probability densities for position are then produéis of
one-dimensional densities. Since the entrdjgy) is now defined by theD-dimensional
generalization of equation (12J5(¢) andSc(g) are sums ofD one-dimensional entropies.
Therefore, if every one-dimensional Hamiltoni&h has the form (3), so that equation (17) is

valid for each coordinate, in the limit > 1,i =1, ..., D, we have the asymptotic formula
D 2T (g +3)

n = Sc(q) + Df(q)
—q Jnl(g+1D)

which becomes an exact equality for thedimensional infinite potential well. The asymptotic
formulae for discrete entropies (20) and (21) can be generalized likewise. However, the
problem of finding the asymptotic relation between quantum and classical entropies of position
for D-dimensional systems whose Hamiltonian is not of the above form remains to be solved.
Interesting open problems are also the calculation of the discrete entropies of position for the
stationary states of other physically relevant quantum systems, and the derivation of general
asymptotic formulae for the quantum entropies in momentum space.

Sa(g) ~ Sc(g) + 1
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